
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Chromationary: Finding A Simple Graph-Based

Approach to Generate Personalized Color Palettes

Jennifer Khang - 13524110

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: jenniferkhang07@gmail.com , 13524110@std.stei.itb.ac.id

Abstract— Color is a visual experience through the human

eyes, often used for many purposes in various fields including art

and design. This paper explains the fundamentals to

understanding how a color palette generator algorithm may work

with a graph-based approach, with nodes and weighted edges.

Each node will represent a different color based on the sample

used, meanwhile the weight of each edge will represent how the

colors correspond to each other—based on principles such as

contrast, similarity, or distance in a perceptual color space. The

graph is then updated with inputs from the user’s interactions,

which influence the graph’s weight through algorithms that

iteratively select the most optimal combinations. This paper will

also show a simple program, demonstrating how user preferences

and graph structures can be combined to generate personalized

color palettes.

Keywords— Color Theory, Perceptual Color Space, Palette

Generator, Weighted Graph, Louvain’s Algorithm

I. INTRODUCTION

Throughout history, humans have sought to understand
colors—initially through symbolism and later through
scientific inquiry. In the earliest day, there was an attempt
from Newton to systematically organize colors, arranging
the visible spectrum into a circle, known as Newton Color
Circle. This research then becomes the ground for many
diverse findings later—although there are some debates
regarding Goethe’s theorem. One primary example that
should be highlighted is the quantization of colors, in a
mathematical way—syntax we nowadays known as color
models and color spaces. The most known ones are the RGB
model. With this, humans achieved a way to access colors
through numeration.

Fig. 1. Newton’s Color Circle. (Taken from programmingdesignsystems.com)

Color has always played a pivotal role within the status quo
—either for design, self-expression, and many more. For

instance, an artist’s tools to express their art are through the
plethora of pigments from the strokes of their brush. Each color
that they pick is unique and is reflected on every work they have
done. They are a trademark for each piece of creation. However,
choosing a color that harmonizes or matches with an illustration
would be a challenging task for artists even for advanced
professionals, as it requires many considerations. These
considerations can range from hue, mood, and so on. Thus, the
complexity of choice amplified the need for a tool to help artists,
such as random color generators.

While traditional color palette generation tools often rely on
predefined rules based on the static template of color theory,
they may fall short in capturing an individual preference. It
strikes monotony, causing many artists to ditch such tools. In an
era where personalization is increasingly valued, developing a
method or tool that reflects personal taste may be needed for
artists. Although it sounds promising, there is barely anyone
who discusses it due to its intricacy. It’s even harder to create a
precise algorithm to randomize colors due to the lack of
distinction for computers to interpret the numerations of current
coloring system. Therefore, this paper will only analyze how to
implement simple graph theory for the tool (of what could
theoretically work) and would not integrate more than that.

II. THEORITICAL FRAMEWORK

A. Graph Theory

Graph is commonly used to represent multiple discrete
objects and their relations to each other. A graph can be
described as ordered pairs, which consist of vertices or nodes
and edges. A graph G can be notated as G = (V, E), where V is
defined as a non-empty set of vertices {𝑣1, 𝑣2, … , 𝑣𝑛} (could also
be called nodes) and E is a set of edges {𝑒1, 𝑒2, … , 𝑒𝑛} that
connects a pair of vertices. The relation between an edge and a
pair of vertices can be notated as e = (𝑣𝑖 , 𝑣𝑗), where e is an edge

connecting two vertices with the index i and index j.

mailto:jenniferkhang07@gmail.com
mailto:13524110@std.stei.itb.ac.id
https://programmingdesignsystems.com/color/a-short-history-of-color-theory/index.html

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 2. Several types of graphs, where G1 is a graph with no multiple edges

and loop, G2 is a graph with multiple edges, and G3 is a graph with multiple

edges and loop. (Taken from Rinaldi Munir’s Powerpoint slides about graph)

Graph can be classified into two types based on the absence
of multiple edges (pair of edges) and loop. First is the simple
graph, which has no multiple edges and no loop. Then, there is
an unsimple graph, which is the opposite of what a simple graph
is. It has at least either one multiple edge or loop (could be both
too). This graph then can be divided further into 2 groups, which
is multi-graph and pseudo-graph. A multi-graph has multiple
edges while pseudo-graph has one or more loops on the vertexes.
The following is more explanation regarding graphs.

1) Weighted Graph

A weighted graph is a graph where every edge has an

assigned number. The assigned numbers hold some value which

may represent cost, distance, and many other relative measuring

units. In this paper, it will likely to be related to how each color

might harmonize.

Fig. 3. Illustration of a weight graph. (Taken from Rinaldi Munir’s Powerpoint

slides about graph)

2) Terminologies for Graph

a) Adjacenct

Two vertexes are defined to be adjacent if both

vertexes are directly connected through an edge. The

following graph has 4 vertexes, whereas vertex 1 is

adjacent to vertex 2 and 3 while vertex 1 is not

adjacent to vertex 4.

Fig. 4. Illustration for adjacent nodes. (Taken from Rinaldi

Munir’s Powerpoint slides about graph)

b) Incidency

An edge and a vertex that is connected directly are

also called incidents. For any edge e = (𝑣𝑖 , 𝑣𝑗), there

are vertex I and vertex j which have an incidence

relation with the edge e. On Fig. 4., graph G1, has

shown that edge (2, 3) is incident to vertex 2 and vertex

3, edge (2, 4) is incident to vertex 2 and vertex 4.

However, edge (1, 2) is not incident to vertex 4.

c) Empty/Null Graph

A graph with only vertices and has an empty set of

edges is called a null org empty graph, which usually is

denoted as 𝑁𝑛 (where n is the number of vertices).

d) Degree

The degree of a vertex is a number that represents the

amount of edges incident to it, usually notated as d(v).

The figure below shows that vertex 1 has the same

amount of degree as vertex 4, which both have 2

degrees. On the other hand, vertex 2 and vertex 3 each

have 3 degrees.

Fig. 5. Graph Illustration. (Taken from Rinaldi Munir’s

Powerpoint slides about graph)

e) Path

A sequence of edges which joins a sequence of vertices

is called a path. The length of a path is defined to be the

number of edges a path consists of.

f) Cycle/Circuit

A path that will start and end on the same node is called

a cycle. The length of a circuit is the number of edges a

cycle has.

g) Connected

Two vertexes, for example 𝑣1 and 𝑣2 , are said to be

connected if there is a path from 𝑣1 to 𝑣2. A graph G is

called a connected graph if, for every pair of nodes

(𝑣1, 𝑣2) in the vertex set V, there exists a path from vᵢ to

vⱼ. Otherwise, G is called a disconnected graph.

h) Subgraph

Say, there is a graph G that has a set of vertexes and

edges (V, E). Then, there is graph G₁ = (𝑉1, 𝐸1). G1 is a

subgraph of G if 𝑉1 ⊆ V (the vertices of G₁ are a subset

of G's vertices) and 𝐸1 ⊆ E (the edges of G₁ are a subset

of G's edges).

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

B. Color Theory

Throughout history, many scientists, art theorists and

practitioners have tried to establish color harmony. A set

of colors creates harmony when their combination

produces and aesthetically pleasing effect when seen

together. It is well known nowadays that harmonious

colors can be represented a point in a color system that

is distributed evenly. It may even be a ground rule to

learn perfect fit combination. One of the most popular

ones includes:

- Complementary harmony, which is colors lying

opposite each other on the color wheel,

- Analogous harmony, which is colors with similar

hues, near to each other on the color wheel,

- Triadic harmony, which is three colors that have

separate hues, about 120 degrees on the color

wheel,

- Split-complementary harmony includes three

colors, with two being on either side of the

complement of the third on the color wheel,

- Tetradic harmony, which is double

complementary scheme, two complementary

pairs which are opposite each other on the color

wheel.

There were many arguments regarding color theory, as

many believed that it is a subjective matter, this paper

will still use color harmony as a ground set up for the

algorithm that will be created.

Fig. 6. Three-dimensional representation of the 1943 Munsell renotations,

with portion cut away, marking as one of the earliest way to quantifies color.

(Taken from https://chromatone.center/theory/color/models/perceptual/)

There is also a thing called perceptual color space.

Perceptual color space is a way to discern or organize color in

a way that reflects how humans perceive. Its main goal is to aim

a uniform color difference towards changes. Color difference or

distance here is a measure of how different colors will be

perceived. It means changes in value correspond to roughly

equal changes in perceived color. Perceptually similar color

pairs usually have smaller color distances.

A color model is a system that uses numerical values to

define colors. There are many popular models, such as RGB,

CMYK, HSV, CIELAB, and many more. For the sake of this

experiment, only RGB models and LAB models will be used

for conveniency.

1) RGB Model

This model is one of the most widely known methods

for color representation as numbers in computer

graphics. It is based on three primary colors that we all

know, which are red, green, and blue. The combination

of these colors in many intensities forms the cube-

shaped RGB color space, meaning that all colors can be

created through their linear combination.

2) LAB Model

Fig. 7. LAB model color space diagram. (Taken from

http://dx.doi.org/10.1016/j.jid.2019.11.003)

The LAB model, or known as CIE LAB,

portrays color in three dimensions, which is L* that

refers to lightness, a* that refers to the green-red

component, and b* that refers to the blue-yellow

component (see Fig. 5). The most common way to

calculate the distance of color is by using CIELAB color

difference, notated as ∆𝐸∗
𝑎𝑏 , as it is designed to be

perceptually uniform. The calculation is done as the

Euclidean distance between points representing the

color stimuli in space. The following is an equation to

determine the perceptive distance for the CIE 1976.

∆𝐸∗
𝑎𝑏 = √(𝐿∗

2 − 𝐿∗
1)2 + (𝑎∗

2 − 𝑎∗
1)2 + (𝑏2 − 𝑏∗

1)2 (1)

The next equation of the formula for CIEDE2000

color difference is given by:

∆𝐸00 = √(
∆𝐿′

𝑘𝐿𝑆𝐿

)
2

+ (
∆𝐶′

𝑘𝐶𝑆𝐶

)
2

+ (
∆𝐻′

𝑘𝐻𝑆𝐻

)
2

+ 𝑅𝑇 (
∆𝐻′

𝑘𝐻𝑆𝐻

) (
∆𝐶′

𝑘𝐶𝑆𝐶

) (2)

where the terms are defined as follows:

∆𝐶′ = (𝐶′

2 − 𝐶′
1) (3)

∆𝐿′ = (𝐿∗
2 − 𝐿∗

1) (4)

∆𝐻′ = 2√𝐶′
2𝐶′

1 sin (
∆ℎ′

2
) (5)

𝑅𝑇 = −2√
C7

C7 + 257
sin(2∆𝜃) (6)

𝑆𝐿 = 1 +
0.015(𝐿1

∗ −50)2

√20+(𝐿1
∗ −50)2

 (7)

https://chromatone.center/theory/color/models/perceptual/
http://dx.doi.org/10.1016/j.jid.2019.11.003

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

𝑆𝐶 = 1 + 0.045𝐶1
′ (8)

𝑆𝐻 = 1 + 0.015𝐶1
′(1 − 0.17 cos(Δℎ′ − 30∘) + 0.24 cos(2Δℎ′) +

0.32 cos(3Δℎ′ + 6∘) − 0.20 cos(4Δℎ′ − 63∘)) (9)

C. Louvain’s Algorithm for Community Detection

Louvain’s algorithm was proposed in a 2008 paper by

Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte,

and Etienne Lefebvre. It took the name from Louvain-la-Neuve,

a Belgium city where Lefebvre initially developed the

algorithm during his Master thesis at Université catholique de

Louvain in March 2007.

Modularity is one of the most suitable metrics for a cost

function to decide on convergence criterion—it’s a measure to

evaluate how well a network can be divided. Louvain’s

algorithm is based on optimization of this Modularity.

Partitions (quality of communities) are measured by Modularity

of the partition. Modularity Q may be defined as the following.

Fig. 8. Definition of Modularity. (Taken from
https://medium.com/walmartglobaltech/demystifying-louvains-algorithm-and-

its-implementation-in-gpu-9a07cdd3b010)

The algorithm works with 2 major steps which are

repeated iteratively.

1) Let there be N nodes in a graph network. To start, each

node will be assigned to different community. For each

neighbor a of node b, it is checked if the overall

modurality increases by moving node a from its

community to partition b. This will be repeated

iteratively in a sequential matter till no improvemment

in modularity can be achieved.

2) Next, it involves rebuilding a new network by clustering

the nodes labelled in the same community. The weights

between partitions are determined by adding up weights

of edges from every node in a community.

Two of these steps will be done repeatedly until there is

no more changes in community label (a maximum

modularity is reached).

III. PROPOSED METHOD

One method to reinvent the color palette recommender is by
using weighted graph and reinforcement learning. There are
several actions needed to make this simple model.

1. Graph Initialization

 The first step that needs to be taken is to build an
undirected weight graph as the ground for the system;
this graph resembles a similar purpose to a database.
Please note that this paper does not focus on generating
random colors. Instead, it aims to provide
recommendations based on similar color palette inputs
by the User. Thus, this experiment is under the
assumption that the database of the system has already
been loaded with colors, depending on the designer of
the graph.

 In this model, a vertex represents different colors.
Each vertex will have a connection with the others
through edges. These edges represent the color
difference or distance that is stated in theoretical
framework at II.B.. Each edge’s numerical value will
be weighted by ∆𝐸00, whereas the smaller the weight
means the similar colors are.

Given Fig. 9., say we have three colors, but the graph
has not been given any weight. We firstly need to
calculate the similarity between the pairs of colors by
Eq. 10, where delta E is just the color distance between
the pairs.

𝑤𝑒𝑖𝑔ℎ𝑡 =
1

1+ ∆𝐸00
 (10)

Then, the program will simply do the calculation based
on lightness, chroma, and hues with the following
equation for each pair.

∆𝐸00 = √(
∆𝐿′

𝑘𝐿𝑆𝐿

)
2

+ (
∆𝐶′

𝑘𝐶𝑆𝐶

)
2

+ (
∆𝐻′

𝑘𝐻𝑆𝐻

)
2

+ 𝑅𝑇 (
∆𝐻′

𝑘𝐻𝑆𝐻

) (
∆𝐶′

𝑘𝐶𝑆𝐶

)

After that, we updated each edges with the
corresponding color differences.

Fig. 9. A representation graph for the system. (Taken from

author’s creation)

https://medium.com/walmartglobaltech/demystifying-louvains-algorithm-and-its-implementation-in-gpu-9a07cdd3b010
https://medium.com/walmartglobaltech/demystifying-louvains-algorithm-and-its-implementation-in-gpu-9a07cdd3b010

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 10. Updated version of the previous unweighted graph.

(Taken from author’s creation)

2. Update Edges’ Weights Based on User’s Inputs

 For the system to work, it needs data from
user’s input to search for similar colors towards the
likings. The more input the system receives, the better
it can recommend unique colors. Once given, the
program will automatically add new nodes from the
inputs and calculate the weights of each edge to pair
with every node.

 After that, Louvain’s algorithm will create
partitions of colors to effectively help the program
search similar colors based on the several inputs that
were given. Automatically, the system will search for
top-k color, whereas k is the number of colors that we
want the program to generate. The following figure is
just an example of the clustering after the User’s input.

Fig. 11. Updated graph after adding User’s input (node 4).

(Taken from author’s creation)

 After being given a new color (represented by
node 4), the program will calculate and automatically
add weights to other nodes. Then, the program tries to
cluster it to find a similar taste based on the inputs were
given. The red circle marks the partitions created by the
algorithm where the given color is similar towards
what is currently in the database.

 Although the simple theoretical implementation, there
are still many flaws with the current system. For instance, it
has not implemented the color harmony needed to guide
beginner artists. At best, this system creates a fun way for
artists to create palettes based on what colors they have right
now. The system will only find the closest color to all the

user’s input. After further research, the author found that
there were indeed ways to implement the theory, which is by
adding more rules towards the weight system of the graph.
However, due to limited time, the author is unable to
continue the experimentation for this paper. This still didn’t
beat the purpose of the paper, which was about finding
simple ways to implement graph, not perfecting the current
tools that exist.

IV. CHROMATIONARY: SIMPLE PROGRAM IMPLEMENTATION

After discovering the theory, there are ways to

implement the system with simple python programs. There

are also results for the implementation too.

A. Program Implementation

This simple program will show how the color

generator works. To be able to implement this program, the

author uses some libraries from Python, which are

networkx, matplotlib, community, and colormath.

Fig. 12. Libraries used. (Taken from author’s archive)

 Then, there were several functions made for the

simulatiom of program. Firstly, the system needs to

initialize several candidates of color (this program

specifically use 512 colors) and the threshold for the color

distance where the program consider it as ‘close’. This is

also where the graph got initialize.

Fig. 13. Init function. (Taken from author’s archive)

 After initializing, the colors then got generated by the

next function with the RGB model. It then got stored in a

list.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 14. Function to generate the colors. (Taken from author’s archive)

 The next function is a tool to convert RGB values to

CIELAB color space.

Fig. 15. RGB to LAB converter. (Taken from author’s archive)

 There will also be a need for generating the graph itself.

This function specifically create edges that connects the

current existing ‘database’ colors.

Fig. 16. Function to generate graph’s edges. (Taken from author’s archive)

 The recommend function is basically an implementation

of Louvain’s Algorithm. It will firstly do the iterative step

as previously mentioned in theoritical framework on II.C..

It will firstly find the most efficient modularity and then

rebuild the new network. It repeatedly does this until its goal

to find the maximum of modularity achieved. The program

will then continue find the top-k color from each cluster. In

this case, the program will use k = 6.

Fig. 17. Louvain’s algorithm implementation. (Taken from author’s archive)

 The following piece of code is just a function to display

color in the UI interface.

Fig. 18. Function to display colors. (Taken from author’s archive)

 Lastly, the main function is used to run the program as

an overall.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 19. Main function. (Taken from author’s archive)

B. Result

The following is the result of implementing the system.

Firstly, the program will ask you for several input until the User

wanted to end it by typing “finish”.

Fig. 20. Program’s console. (Taken from author’s archive)

After that, the program will give an interface of the color

you chose and then recommend other colors as a

recommendation.

Fig. 21. Colors that we picked. (Taken from author’s archive)

Fig. 22. Recommendation results. (Taken from author’s archive)

The author also tried to visualize how the graph works with

its weight. However, since the initial program consists of 512

seed colors, a simpler program that consists of only a few colors

is needed (from graph_representation.py). The graph that got

generated should look like the following figure.

Fig. 23. A simple graph representation from the program. (Taken from

author’s archive)

V. CONCLUSION

With this research, it can be concluded that graph theory has
shown many applications to many sectors. It has been discussed
that weight-based graphs can be utilized as a base system for a
color palette generator system. This paper specifically explored
a graph-based approach to color palette generation, where nodes
represent colors and weighted edges define their relations based
on principles like contrast, similarity, or perceptual distance. By
incorporating user interactions, we may create a system that
gives artists a much more fluid way to express themselves and
not to be stuck without the personalization of color inputs. This
is plausible due to the iterative algorithm, Louvain’s algorithm.
Further improvements, such as implementing additional rules
into the weight system, could enhance the algorithm’s main
purpose to help novice’s artist in understanding color theorem
regarding harmony.

By applying this approach, especially for fields such as the
art industry, the author hopes it can serve as a tool to enhance
artists' creative freedom and self-expression. The author also
hopes for further research on this topic to perfect the algorithm
better when given the time to or for anyone who wants to hold
it.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

APPENDIX

Source code: https://github.com/jenka-

h/itb/tree/e39dd8cc084cb90c2e7988795f59b3a06ac4e642/sem

ester-2/matdis

VIDEO LINK AT YOUTUBE

https://youtu.be/mX_6aH8Dj5w

ACKNOWLEDGMENT

The author would like to express gratitude towards God for
the guidance and the opportunity to learn and move forward
through the process of hardship during the semester. The author
would also like to thank the lecturers of Discrete Mathematics
IF1220, Mr. Arrival Dwi Santosa and Mr. Rinaldi Munir for the
vast knowledge they have shared throughout the course. There
were so many insightful ideas that were given to us. Lastly, the
writer will always be in debt to her parents. They are her muse
and reasons to continue to live and roam the world, to be curious.
Without their support, the author would have not advanced this
far in life.

REFERENCES

[1] R. Munir, (2024). “IF2120 Matematika Diskrit.” Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/matdis.htm

[2] P. Weingerl, Theory of Colour Harmony and Its Application, vol. 25.
Tehnicki vjesnik - Technical Gazette, 2018.

[3] A. Burambekova and P. Shamoi, (2024). “Comparative Analysis Of Color
Models For Human Perception And Visual Color Difference.” Available:
https://arxiv.org/abs/2406.19520

[4] Anon, (2018). “A short history of color theory - Programming Design
Systems.” Accessed: June 20, 2025. [Online]. Available:
https://programmingdesignsystems.com/color/a-short-history-of-color-
theory/index.html

[5] A. Mishra, (2019). “Demystifying Louvain’s Algorithm and Its
implementation in GPU.” Accessed: June 20, 2025. [Online]. Available:
https://medium.com/walmartglobaltech/demystifying-louvains-
algorithm-and-its-implementation-in-gpu-9a07cdd3b010

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 1 Juni 2025

Jennifer Khang NIM 13524110

https://github.com/jenka-h/itb/tree/e39dd8cc084cb90c2e7988795f59b3a06ac4e642/semester-2/matdis
https://github.com/jenka-h/itb/tree/e39dd8cc084cb90c2e7988795f59b3a06ac4e642/semester-2/matdis
https://github.com/jenka-h/itb/tree/e39dd8cc084cb90c2e7988795f59b3a06ac4e642/semester-2/matdis
https://youtu.be/mX_6aH8Dj5w
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/matdis.htm
https://arxiv.org/abs/2406.19520
https://programmingdesignsystems.com/color/a-short-history-of-color-theory/index.html
https://programmingdesignsystems.com/color/a-short-history-of-color-theory/index.html
https://medium.com/walmartglobaltech/demystifying-louvains-algorithm-and-its-implementation-in-gpu-9a07cdd3b010
https://medium.com/walmartglobaltech/demystifying-louvains-algorithm-and-its-implementation-in-gpu-9a07cdd3b010

